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ABSTRACT 

The problem of obtaining a control pol1cy which i s opt i mum in some 

respect for a specified system is one of the more press ing problems of 

automatic control theory today. L. S. Pontryagin stated his Maximum 

Principle i n 1956 and L. I. Rozonoer discussed and extended t he work i n 

a series of articles published in 1959. 

The Maximum Principle, as it applies to the " free right end" problem 

for a non-linear, one-dimensional system, is utilized in conjunct ion wi t h 

the CDC 1604 digital computer to obtain optimal control policies for 

several different cost functions. 

The authors wish to express their appreciat ion for the encourage

ment given them by Dr . Harold A. Titus of the U. S. Naval Postgraduate 

School and to express their gratitude to Miss Mary E. Haynes of the 

Computer Facility, U. S. Naval Postgraduate School who se patient program

ming assistance materially aided in the successful completion of this 
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1. Introduction, 

One of the most important problems of automatic control theory ts 

the problem of creating systems which are optimal in some prescribed 

sense. Since the advent of satellites and space travel, a set of problems 

of the type to be discussed here have taken on greater importance. Since 

many of the most interesting problems in this field have system equations 

for which the methods of the Calculus of Variations fail, new mathemati· 

cal methods are required for their solution. 

Suppose that the system to be investigated may be described by an 

equation of the form 

~ = G(X,U) , x(o) = c (1-1) 

where X(t) is the state variable and U(t) is the control variable.* The 

proble111 then t.s to determine U(t) such that the system t.s optimized 

according to some specified criterion or cost function. 

Two types of process are of particular importance: 

(1) A desire for X(t) to re111ain as close to a prescribed path as 

possible throughout the duration of the process and, 

(2) A desire for the final value of X(t) to be a prescribed value 

or in a prescribed state (Terminal Control), 

·'Eqn, (1-1) is written in one dimension and this investigation will 
be confined to syste111s of the first order, However, all methods and 
techniques employed may easily be extended to n-th order systems where 
X and U would be replaced by the vectors ! and Q. 



The type of problem as set forth in case (1) is the type investigated 

here and is the "Free Right End" problem as described by L. I. Rozonoer 

in Section I of his paper dealing with Pontryagin's Maximum Principle /1/ . 

A non-linear system was hypothesised and methods of obtaining a 

control policy which would provide an optimum system according to some 

specified criterion were investigated. 

The system chosen for the investigation may be desc ribed by a non· 

linear differential equation of the first order which has the follo~ing 

functional form: 

X = f(X,U) X(O) = C (1-2) 

in which one may consider X as representing the error or deviation from 

a prescribed path and U as representing the control effort applied. The 

problem was to determine the control policy U, such that some criterion 

function of the form 

J = J:G(X,U)dt (1-3) 

would be minimized. Such functions as described by Bqn. (1-3) with the 

constraint of Eqn. (1-2), which evaluate the performance of a system are 

conrnonly referred to in the literature as "criterion" or "cost" functions. 

Sometimes they can be expressed simply in terms of integrals . At best, 

the choice of a cost function J, is a compromise between a desired crite

rion of goodness for the control design and one which leads to a more 

tractable mathematical analysis. 

The specific system investigated is described by the first order, 

non-linear differential equation 

X = AX + B Sin + CU (1-4) 
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with the constants having the following values : 

A= · 0.1 B o +1,0 c ~ +.25 

Several different cost functions, subject to the constraint of 

Eqn, (1-4) were proposed for the investigation : 

J= ~(X2+uf)dt (1-5) 

J= >:<x2)dt (1-6) 

J= >:(uf)dt (1-7) 

The problem of obtaining a control policy to effect the minimization 

of these criteria (each of which leads to a different set of adjoint 

equations) will be treated in detail below. 

Qualitatively, minimizing Eqn. (1-5) would correspond to minimizing 

the error and the control effort to the system, Minimizing Eqn. (1-6) 

would correspond to minimizing only the error, while minimizing Eqn. (1-7) 

would minimize only the control effort of the system with no regard for 

the error. 

As mentioned above, this investigation deals with the "Free Right 

End" problem, As a result, the time interval over which the integrals, 

Eqs. (1-5), (1-6) and (1-7), were evaluated was fixed at 10 seconds. 

By the very nature of the formulation of the problem (minimization 

of the integral J = J:G(X,U)dt with the constraint X= f (X,U), having 

X{O) specified, but not specifying the value of X at the final time T), it 

falls within the province of the Calculus of Variations. Occasionally 

such classical methods can be employed to determine the optimal control 

policies. 

The authors however, attempted to apply the work of a Russian control 
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theorist, L. S. Pontryagin, as it is presented in a series of articles 

by L. I. Rozonoer /1,2,3/. With the aid of these papers and the CDC 

1604 digital computer, satisfactory control policies were obtained. 

Briefly recapitulating, the purpose of this thesis is to use the 

digital computer, employing various programming methods, to search fo~ , 

compute, and design an optimal control which Will satisfy the various 

criteria (cost functions) as applied to Eqn. (1-4). 
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2. The uncontrolled system. 

The uncontrolled system as described by the following equation 

X = -O. lX +Sin X (2-1) 

was investigated first. A knowledge of the behavior of t he system with-

out restraint or control applied was deemed necessary in order that 

investigations of the system with control could be properly interpreted 

and understood. 

The Donner Analog computer (Model 3100) was employed in order to 

obtain the phase plane plot of velocity (X) versus trajectory (X). Fig. 

(2-1) shows the computer diagram used t o obtain the phase plane desired. 

-Y = -2t + 20 Sin(t) 

PIG. (2-1), Computer diagram utilized in order to obtain the 
Phase Plane (X vs. X) for the uncontrolled system. 

As no sine function generator was availab1e, the sine function was 

simulated as shown within the dotted rectangle,k 

------*The sine function was simulated by constructing the analog of the 
second order differential equation X + X = 0 whose solution is kno~~ to 
be X = sin(t). 
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The output 

-Y = 20 Sin t - 2t (2-2) 

was recorded on an X-Y Plotter utilizing the real time variable input to 

the X coordinate. Fig. (2-2) shows the results of this investigation, 

the phase plane plot for the uncontrolled system. 

FIG. (2-2). Phase Plane Plot of the uncontrolled system showing 
Velocity (X) on the ordinate plotted against Trajectory (X) on 
the abscissa. 

Since the computer output was in terms of Y and Time, it was neces-

sary to convert these coordinates to the desired coordinates X and X. 

In order to scale the abscissa it was necessary to find the point on 

the curve corresponding to ff radians. Since the curve as described by 

Eqn. (2-2) is a linear combination of a sine curve and a straight line 

U = -Kt (2-3) 
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the points where the r e sul tant curve intersects the straight line are 

mul tiples of ~ . The points on t he abscissa lying di rectly above these 

point s of int ersec tion are, therefore, also multiples of n radians. In 

this manner the X coordinate was transformed from a time scale t o a 

distance scale. (Since only qualitative results as to veloc i ty we re 

desired t he Y txis was not rescaled and no transformation of coordinates 

was made). 

Investigation of Fig. (2- 2) yielded the f ollowing inter e s ting informa

tion concerning the existence of equilibrium points: There are two st abl e 

equilibrium points located at X= 2.84+ and at X = 8.4h and there are t.wo 

unstable equilibr ium points located at X = 0.0 and a t X= 7.02+. Thus, 

the uncontrolled system may be expected to move t oward one o f the stable 

equilibrium point s depending on the initial value of X as indicated by 

the arrows on the curve of Fig. (2- 2). 

In addition to the above investigation, the CDC 1604 digital comput e r 

was employed as an addit i onal method of determining the equilibYium points. 

By choosing selected values of initial X (both positive and negative) and 

solvi ng the differentlal equation (by the Runge-Kutta method), equilibrium 

points were obtained which agreed favorably with those obtained by the 

graphical analysis of the analog solution. (Fig. (1-2) and Fig. (1-3) 

in Appendix I are the computer graph solutions obtained from this investi

gation. Tabular output also was obtained but is not included here due 

to the volume obtained and due to the relative unimportance o f t his sort 

of detail). 

In order to obtain values of the equilibrium poi nts t o an a ccuracy 

greater than that possible by either of the preceeding two methods, 

s tandard mathematical methods were ut i lized. The derivati ve was set 
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equal t o zero and the values of the equilibrium points' were obtalned to 

three decimal point accuracy with the aid of sine tables , a desk cal-

culator and iterative proceedures. The results obtainled again corres · 

ponded to and verified the earlier results, yielding sltable equilib::f.um 

points at X • 2.852+ and at X ~ 8.416+ with two unstab,le e<juilibrium 

points at X 0.00 and X= 7.068+. Only positive equUibrium points 

were calculated as this investigation was to be limite:d t o positive 

values of X. 

Interpreting the significance of the sum of these. investigations, 

it is possible to define the regions of stability and instability for the 

uncontrolled system as shown below in Fig (2· 3) 

0 0 

8 Stable eauilibrium point 8.416+ 

r-J~.nstable e9u!!..~i,ll!.l1.., po~nt -_ 1_- 7.068+ 

6 

4 
Stable equilibrium point 2. 852+ 

2 

0 _J]ustable e11uil I bti urn pol n.t _II~ - - -

2 
Stable equil.il?r1um eoint - 2.85+ 

4 

6 

Wm-~uble equUibdum_p.a.inJ;_ _ ___ -7,0Z.± 

8 Stable eouilibrium _p~_int 

0 0 

FIG. (2- 3) Regions of s t ability and instability for the 
uncontrolled system. 
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3. Maximum principle t n opt i mal system t heor y. 

As st~ted above, i n an effo~t to obtain a sol ut i lln t o the prob1e.m 

o f obtai n i ng optimal controls, t he authors utilized t he " Maximum 

Princ i ple" as hypothesized in 1956 by L. S. Pontryagin on the baois o f 

work performed by him, V. G. Soltyanskii and R. V. Ga1pkre lidze . /4 / 

Pontryagln ' s Maximum Principle is presented in s ome de! tail by L I. 

Rozonoer i n a series o f articles appearing in "Aut oma t: ika i retemakhanika" 

in 1959. (''Automation and Remote Control" presents an £ngtlsh transla -

t ion of this Russian Journal. /1. 2. 3/). A brief resutne of the most 

important con<!epts will be made her e in order that a 1:oi!Ullon gr ound f or 

furt her discussion may be establ shed. 

Rozonoer' s papers deal with the problem of obtaining a control which 

is optimum in some sense for a system which may be denc ribed by a set of 

di f ferential equations of the n-th order!* 

i; l , •• • ,n (3-1 ) 

where xl' •. • • xn a r e the parameters of the system anc ui ••••• ur are 

the positions of the controlling elements , 

Rozonoer shows in his paper that the problem of c1ptimi Z1ng the 

system with respect to an integral 

J ., ~c(x ,u)dt ( 3-2 ) 

leads to the problem of optimizing with respect t o cocrdinate s.** At t his 

---*Any n-th order differential equation may be exprlessed i n t erms o f 
n fi r st order differential equat i ons involv ing n vari ble s . 

"'*L, I. Rozonoer, L. S. Pontryagin ' s Max imum PTi~&ciple i n t he Theory 
of Opt imum Systems, "Automation a nd Remote Control ", Vol 20, p1291. 
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point an additional variable may be introduced 

x 
1

(o) = o n+ 
(3-3) 

which allows one more differential relation 

to be added to the system specified in Eqn. (3·1). The problem thus 

becomes one of optimizing the n+lst system coordinate at the final 

moment of time . 

Specifically, the problem of optimizing a linear function of the 

final values of a ll the coordinates of the system, that is, the quantity 

(J-5) 

where Ck are certain constants, is developed in detail in Rozonoer's 

paper. In the discussion of this problem, the theory is first developed 

fo r the ca se in which the right end of the trajectory, X(t), is not fixed, 

That is, there are no restrictions imposed on the final values of the 

coordinates.* 

A variable vector, P(t) = P
1
(t), • • • , Pn(t), which has a direction 

at timet • T opposite to the direction of the vector C = c1, ••• , en is 

introduced at this point 

i 1, • • •• n (J-6) 

It is assumed that the modulii of the vectors f(T) and ~are equal . 

*For the entire problem considered here, the final coordinate was 
left free. Only the duration of the problem was fixed at 10 seconds. 
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The variabl es Pi(t) are subject to a set of differential equations 

__ ~P ~fs(Xl, .. . ,Xn;ul, •• • ,ur;t) . (3·7) P
1
(t) / ; i = l, ••• ,n 

- 'T 5 dX . 
~ 

(Let us note here that if any control, U(t), is given, the vector f(t) 

is uniquely determined from Eqs. (3·7), where conditions Eqs. (3-6) 

play the role of boundary conditions.) From Eqs. (3-5) and (3-6) bound-

ary conditions for the final values of the adjoint variables, Pi' may be 

obtained. 

Rozonoer continues, and points out that if the following expression 

is formed, 

H(X,P,U,t) = t p X 
s:=l s s 

that Eqs. (3-2) and (3-7) may be written in the form 

i = l, • . • ,n 

(3- 8) 

(3-9) 

Since the Xi(O) are specified in the problem statement and the 

P1(T) may be found from Eqs. (3-6) and (3-5), the boundary conditions 

on Eqn. (3- 9) are 

i = 1, ••• ,n (3-10) 

The H- function is analogous to the Hamiltonian in analytical 

mechanics, and the vector f(t) to the impulse vector. Rozonoer proves 

in his paper that, according to the maximum principle, the H-function 

must be maximum (minimum) in U for any values of X and P in order to 

obtain the optimum condition. 

Now well known principles of Calculus are resorted to and the 

partial derivative of the H-function is taken with respect to U and set 
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equal to zero. 

(3·11) 

Eqn. (3-ll} yields a relation between the control U and the adjoi nt 

variable P. 

Since the cost function to be minimized has been defined as a 

linear combination of the final values of the coordinates of the object 

system, Eqn. (3-5), and this function added to the sy steQ as the n+lst 

coordinate, it may be seen from Eqn. (3-9) that 

(3-12) 

in all cases. This allows immediate integration of Pn+l yielding 

Pn+l = CO!ISTANT (3-13) 

Since Pn+l is constant and we know from Eqn, (3·10) that Pn+l(T) ·Cn+l , 

we see immediately that 

Also note that Cn+l will always be equal to one and that 

ci = 0 i = 1,2, ••• ,n 

(J- 14) 

Thus we see that Pn+l = -1 which allows some simplification in Eqs. (3· 9). 

As a result of the above manipulations, 2n·l differential equations 

are obtained, the solution of which yield the desired optimum control. 



4. The cost function J = J:<x2+u2
) dt • 

. o 
The first system investigated was one in which the. integral 

(4 1) 

was to be minimized, The system to be controlled was d1escribed by the 

differential equation 

X = AX + 1l SinX + CU (4· 2) 

for which the constants A, B, and C had the same values as specified in 

Section 2; namely, -0,1, 1.0, and 0.25 respectively. T'he time interval 

T, was fixed at ten seconds. (Some investigation as tq1 the effect of 

extending the time interval to 20 seconds was investig ted and is dis-

eussed below,) 

Since the investiga t ion of the uncontrolled systertl showed several 

points of stable and unstable equilibrium for initial v•alues of X 

between zero and 10, an initial value of X equal to 20 was chosen in 

order to include the effects of the equilibrium points. 

The problem was approached according to the principles as set forth 

in Rozonoer' s paper, /1/, dealing with Pontryagin 1 s Max;imum Principle. 

In order to apply Pontryagin's Maximum Principle, it is necessary 

that the system be described by an equation of th.e fo specified by 

Eqn. (3·1); i.e., a first order differential equation, either vector or 

scalar. Since the specific system under investigation, Eqn. (4-2), is of 

first order, no additional manipulation was required. 

Then, in accordance with Rozonoer 1 s statement that optimizing with 

respect to an integral leads to the problem of optimizi g with respect t o 

13 



the final values of t he coordinates, the cost function was added as 

the n+lst coordinate 

The system equations now have the form 

Next, forming the final value functional S, Eqn. (3-5), 

the values of the constants c1 are obtained, 

c1 = o 

c2 = 1 

(4-3) 

(4-4) 

(4-5) 

(4-6) 

and, s ince we know from Eqn. (3-6) that the adjoint variables are equal 

to but of opposite sense to the c1 at the final time T, we now have the 

boundary conditions 

P
1 

(T) = 0 

P2(T) = -1 

Forming the H-Function, Eqn. (3-9), 

(4-7) 

(4-8) 

and making appropriate substitutions for the x
1 

the H-function becomes 

{4-9) 

From Eqs. {3-9) and (4-9) it is now possible to obtain the adjoint 

equations below: 
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P1 ; -(A + B CosX1)P1 - 2X1P2 

p2 == 0 
(4-10) 

Applying the principles of Calculus to the H-function in order to 

obtain the minimum with respect to the control U, a relation between 

the adjoint variables Pi and the control variables is found. 

(4-11) 

. 
Noting that the equation for P2, Eqn. (4-10), is readily integrable, 

it is seen that P2(t) is equal to a constant. Since P2(T) = -1, Eqn. 

(4-7), it follows that P2 must equal -1 at all times. Knowing the value 

of P2(t), it is possible to simplify Eqn. (4-11). 
pl u;a (4-lla) 

Finally, making the appropriate substitutions for the constants 

A, B, and C and for the adjoint variable P2(t) and replacing U by P1/B, 

the following set of differential equations are obtained: 

(4-12) 

(4-13) 

(4-14) 

The solution of the above set of equations is the problem remaining at 

this point. 

Numerical methods and the CDC 1604 digital computer were utilized 

in order to obtain a solution to this problem. Specifically, the Runge-

Kutta method of evaluating first order differential equations, as program-

med for the CDC 1604, was employed. (See Appendix V). 
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In order to obtain solutions to the set of differential equations 

by numerical methods, initial conditions are required. Since initial 

conditions are known only for the X variables, (X1(0) =20 , x2(0) =0), and 

not for the adjoint variable P2, the immediate problem becomes one of 

searching the adjoint space for the initial conditions which will yield 

the desired solution.* 

The first method proposed in an effort to obtain P*(O) was one in 

which several P(O) would be selected in an effort to bracket P*(O). Then, 

through some selective iterative scheme, the bracket size would be reduced 

and, eventually, the P*(O) yielding THE OPTIMUM system could be obtained, 

(This method of solution is commonly called a "hill climbing" technique) . 

There was, however, no evidence that the variation of the cost function, 

J, versus the initial values of P would be smooth, and the possibility of 

"homing in" on some local minimum rather than the true minimum was present. 

(The investigation of the system showed that local minima did exist in 

many cases.) 

In view of the above, the authors decided on another approach to the 

problem of obtaining P*(O). A reasonable range of values for P*(O) was 

guessed. Then, the differential equations for the system were evaluated 

for x
1
(0); 20, x2(o) ~ 0, and P

1
(0) ranging from ~250 to +50. This 

investigation yielded values of cost function for 300 integral values of 

P(O) as shown in Fig . (4~1). 

A brief comment on the details of programming this problem might be 

*It should be pointed out here that any solution generated from Eqs. 
(4-12), (4-13) and (4- 14) will be optimal with respect to the initial 
conditions chosen . However, of all these optimal solutions, there is one 
"best" solution. The P(O) which yields THE OPTIMUM solution will be 
designated P*(O). (The asterisk when applied to any other variable will 
likewise refer to THE OPTIMUM system.) 
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FIG. (4-1). 

appropriate here. 

- 50 

P(O) 

Cost function vs. !nit ia 1 (B l~e ~f IP. 
X(O) 20 J = J (X +U )dlt 

0 

Since it had been decided t o obtaun a P*(O) by 

40000 

Cost 
Functi on 

J 

20000 

calculating the cost function for several P(O), the ni!Xt question to 

resolve was in regard to the range of values of P(O) 1to investigate, It 

was suggested that a first guess might t.e that the in,itial control, 0(0), 

should be at least as large as X(O) but of opposite s gn. Utilizing ~qn . 

(4-lla) and recalling that X(O) = 20, a first guess cs P(O) at about -160. 

In an effort to allow for some uncertainty and also tr obtain infonnation 

as to the behavior of the cost function for P{O) not n the vicinity of 

P*(O), a range of F(O) was selected from -250 to +50 lu stated above. 

Fig. (4·1) was the result of this initial invutigati<>n. {Not shown in 

Fig. (4-1), but obtained in a tabular output were the final values of the 

trajectory, X{T).) 

Locating the P*{O) which yields the minimum cost function and then 

repeating the above investigation in the neighborhood of the first deter-

mined P*{O) ~ € allows P*(O) to be detertnined to any ,1egree of accuracy 

desired . 
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...> 
~ 
H :z; 
0 
0 

The major disadvantage of the above method is the time required to 

obtain P*(O) to a reasonable accuracy. In excess of 11 minutes was re· 

quired for the above investigation. (It was not poss·ible to obtain tra-

jectories or control policies during this first investigation due to 

storage limitations of the computer.) At that, the result ing P*(O) was 

accurate only to an integral value. 

0 

-2 

-4 

-6 

·8 

2 

\ 

\ 
\ 

- -- P*(O) 121l "--' 
- - P*(O) 12:r . 42 
- -- -- P*(O) 127.4288 

FIG. (4-2). Optimal control policies, O(t), shOiwing var;.atio~ 
with the accuracy to which P*(O) is computed for J = J(X2+U )dt . 

It should be noted that the accuracy to which P*(O) was determined 

affected both the control policy and the trajectory. Fig. (4-2) shows 

the effect on control that the accuracy of the P*(O) ihad. 

The OPTIMAL Control Policy obtained from the above computations 
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yielded a cost function of 1099.52 versus a cos t function of 1978.09 for 

the uncontrolled system, an improvement*of 44.81.. 

20 

15 

5 

Optimal 
Trajectory 

Uncontr:t'l~ -
Trajectory ........._ '-.... 

TIME (t) Sees. 

"-.. 

" ......._ --

0-+--------~------~~-------t------~~-------7~ 4 8 10 

PIC. (4-3). Tra jectory vs. Ti~ for the OPTIMAt syscem (solid 
curve) and the uncontrol l ed system (dotted curve). 

Fig. (4-3) shows the trajectories obtained for tli.e uncontrolled 

system and the optimally controlled system. Note that the trajectory 

obtained for the optimal case as sho.m in Fig. (4-3) ,ppears to approach 

~ constant value of about 2. 7 rather than a final valu1e of zero. However, 

recall that the cost function to·be minimized here is a combination of 

error, X, and control effort, u, and ·also that the un ontrolled system 

had a stable equilibrium point at X~ 2.84. One might assume, therefore, · 

-----*Percent improvement is defined as 

Percent improvement = J (uncontrolled) - J (controlled) 
J (uncontrolled) 
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..:1 

that the effort necessary to r educe the error below this value would 

exceed any reduction in the cost £unction that would 1resulc from such a 

reduc t ion in X. 
2 

X 10.417 

4 

X 8.07 

~ 

6 8 

TiME (Sec) 

10 

~ -10 

tJ 

-15 

FIG. (4-4). Optimal control policy for 11(0) = J 0 showing 
local maxima and minima, 

Fig. (4-4) shows the optimal control policy obta1 ned for this system 

with X(O) = 20. It l.s very interesting to note that f he points of local 

maxima and minima occur when the trajectory, Fig. (4-.3), has a value such 

that the velocity, X, of the system is also very cloSI! to a maximum or 

minimum. (See Fig. (2-2) which is the velodty-displllcement phase plane 

for the uncont rolled system). 

Having investigated the system with the lnit1al ~alue of X set at 

20. the next part of the investigation involved the d~!termination of the 

effect of the initial value of X on the P*(O), the opl:imum control policie$ 

and the optimum trajectories. Consequently, the syst •ms having initial 

va l ues of X equal to 15, 10, and 5 were invest igated, The P*(O) in each 
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case was obtained in a similar manner t o that described for the system 

in which X(O) = 20. Optimal controls and optimal trajectories were 

obtained in each case. 

Upon investigation of the resulting optimal control policies, it 

was noted that they were remarkably similar in appearance' to the optimal 

control policy for the system having an initial X equal to 20. Fig. (4-5) 

shows the control policies for the four systems (X(O) = 20, 15, 10, 5). 

Note that the corr espondence is very good for X(O) = 10 and 15 until the 

latter part of the common time interval at which point the three policies 

begin to separate. Of course,this correspondence only holds if the origin 

of the time axis for the systems having initial X equal to 10 and 15 are 

moved to the right as indicated, Notice, however, that the control policy 

for the system having an initial X equal to 5 does not seem to correspond 

at all. 

In spite of this latter result , the question arose as to whether the 

optimal control policy £or t he X(O) = 20 system, in conjunction with lts 

trajectory,might provide the P*(O) for all initial values of X between 

20 and the lower limit of the trajectory of about 2,7. 

Consequently, systems having initial values of X of 17.5, 12.5, 7.5, 

2.5, and 1.0 were investigated for P*{O). Having obtained the P*(O) for 

these systems, the calculated P*(O) were ploted on a curve of optimal 

control versus optimal trajectory for the system having initial X equal 

to 20, Fig. (4-6). One immediately notices the close correspondence 

except for those system having initial X equal to 5, 2.5, and 1.0. Since 

the optimal trajectory for the X(O) = 20 system never got below a value 

of about 2,7 , it is reasonable to assume that it would not be .possible to 

21 



(u) 

' , 

Contr ol vs. Tim~ for various initial X sh•)Wing corres
pondence except durinG the latter pDrt or the co;r.ruon time :interval and showing 
the non-correspondence for initinl X e~ual to 5 . 0 . 
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~~0~----~~~----~10~----~~------~ 
0 Trajector,y (X) 

-10 

-12 ~ 

I 
-14 

-16 20.0 

FIG . (4- 6). Optimal Control plotted against Optima1 Trajectory for the 
system havine initial X equal to 20. Indicated points are the P*(O) obtained 
for systems having inital X equal to the values indicai~ed. For T = 10 sees, 
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obtain a P* (O) for initial X which were less than t h i s value , i.e., not 

on the curve. 

As a result of the above investigation, the possibility was suggest ed 

that if the system having initial X equal to 20 were allowed t o run for 20 

seconds and a new optimal control policy and trajectory obtained for t hi s 

system, that it might be that the control policy for the X(O) = 5 s ystem 

would match and that this new U* vs, X* would provide the P*(O) for the 

values of X less than 2.7. 

The X(O) ~ 20 system was allowed to run for 20 seconds and a new 

optimum control and trajectory were obtained as well as a plot o f U* vs. 

X*. When the P*(O) for the system investigated above were plotted on the 

new U* vs X* curve, Fig. (4-7), very close correspondence was noted in all 

cases including the ones for initial X of 5, 2.5 and 1.0. One must keep 

in mind that by extending the time interval to 20 seconds the problem 

became a new problem entirely. Even so, the results of this investiga

tion show that the U* vs. X* curve for X(O) ~ 20 over the extended time 

interval may be used to obtain an initial guess for the P*(O) for values 

of X(O) between 20 and zero. Modification of the initial guess in order 

to obtain the true P*(O) would be a much easier problem than the problem 

of obtaining P*(O) from scratch. 

The results, as stated above and as shown in the various figures, 

prove conclusively that it is possible to obtain numerical solutions t o 

the problem of obtaining an optimal solution to the non-linear system by 

means of Pontryagin's Maximum Principle. 

It is to be pointed out that a very distressing feature o f this 

method of solution is the excessive amount of time involved in obtaining 

a satisfactory solution to the problem compared >i th the problem time 
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::+=-0 - -----,;- ?-·- ( )-~Q_ --~1~-
0 Trajectory X 

-8 

(u) 

- 10 

- 12 

FIG.(4-7). Optimal Control plotted against Opt~ Trajectory for the 
system having initiAl X equal to 20. The time interval was extended in 
this case to 20 seconds. Indicated points are the P*(O) obtained for the 
systems having initial X equal to the values indicated. 
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o f 10 or 20 seconds. (This would S\ ggest some invest igation int o the 

possibility that more sophisticated programming of t he CDC 1604 digita l 

computer might result in a shorter s olution t ime on t he computer . ) 

Finally, one additional fact should be borne l n mind. Although the 

digital computer was utilized succe~sfully t o cbtain t he optimal control 

function (specified at intervals ~f 0.1 seconds) , build i ng a physical 

component to duplicate this control is quite another ma tter. Some com

promise would probably be necessary. Perhaps a square pul se o f U (as i n 

the output of a zero order hold in a sample data system) corres ponding in 

width or modulus to the peaks shown in Fig . (4-5) would suffi ce for engine

ering purposes. Another possibility would be to feed some percentage of 

the value of the trajectory back to the controller (negdtive feedback). 

In any case , ea ch type of control would have to be evaluated and 

the cost function compared to the optimum one. It then becomes a 

question of deciding whether or not the results are sufficiently "opt i 

mum" for the engineering purpose in mind. Perhaps the only utility of an 

investigation such as this is in providing the ''ideal" with which the 

engineer may judge the performance of the system he has designed. 

(Additional graphs of the optimal control policies and the optimal 

trajectories for the above mentioned initial X supplementing and support

ing the above data and conclusions may be found in Appendicies I and II.) 
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5. Ihe cost function J :~ u2
dt. 

The second system investigated was one in whi ch ehe i ntegral 

(5-1) 

was to be minimi~ed with the same object equation a s f n Section 4. 

X ; AX + B Sin X + CU (5-2) 

Proceeding in the same manner as in Section 4, it11troduce the vari -

ables 

Substituting these 

x
1 

; x(t) 

x2 : 1 u2 dt • 

variables in to Eqs. (5-l) 

the differential form yields the system equations 

By forming the final value functional 

and. (5-2), and using 

(5-3) 

(5-4) 

(5-5) 

the C vector is obtained. In order to minimize the final state of the 

adjoint equations, recall that P1(T) must equal to- a i. Thus the 

foll owing boundary conditions for the adjoint space a 'e obtained 

P1(T) =-Cl =0 

P2(T) : -e
2 

= -1 

Formi ng the ll- function as before 
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and performing the partial different i a tions as defined by Eqs. (3-9), 

the following set of simultaneous equati ons i s obtained, 

x
1 

= AX
1 

+ B Sin X
1 

+ CU 

x2 = J 
Pl = -(A + B Cos X1)P1 

p2 = 0 

(5- 8) 

By differentiating H with respect to U and setti ng equa l t o zero, 

a re l a tion between the control U, and the ad joi nt variables is obta ined, 

(5-9) 

Integrating the last of Eqs. (5-8), one is able to evaluate P2(t) 

as before, 

P2 Constant . 

And since 

then 

Now substituting values for P2 and C into Eqn. (S-9), the relation 

between P
1 

and U becomes 

(5- 9a) 

Now Eqs. (5 - 8) may be arranged in a form suitable for solution 

(5- 10) 

( 5- 11 ) 

(5- 12) 
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hav~ng the following boundary conditions 

(S-13) 

As in Section 4, two of the above equaLio s. Eqs. (5-10) and (5-12), 

mus t be solved simultaneously after finding the P*~O) which minimizes the 

cost function, Eqn. (5-l) . But, before stating t he results of this in

vestigation, recall that the integral to be minimized i s J: uf dt • 

Even without Pontryagin's Maximum Principle, the solution is immediately 

obvious. U must equal zero if the cost funct ion is ~o be minimized, since 

the control U, is independent of X in the object equation, Eqn. (5•1). 

Thus, one might hope for a reliable check on th. answers obtained by the 

methods utilized in this paper in the solut1on to this system. 

Proceeding as in Section 4, values of P(O) between - 250 and + 50 

were investigated and the corresponding cost f unctions computed. The 

results verified the expected minimum of zero f~t P*(O) = 0,0. Fig. (5-1) 

shows t he minimum cost function for an 1nit 1~1 P equ£1 to zero which 

resulted i n a zero control for the entire time interva l, i.e. the un-

controlled system, As was stated above, this !& a reasonab le and expect-

ed solution. 

Gttlizlng the criteria J = ~ufdt provided a ~heck on the solutions 

obtained in synthesizing an optimal system by tl- maximum principle. 

The results obtained from the solution of ~qs. \5 10), (5-11) and (5-12) 

verified the predictions made through inspectto f the H· function and 

its derivative, Eqs , (5-7) and (5-9), 

It appears from the above discussion, that this is not a very sensible 

way to ~se .}u2 dt as a cost function, A more mt~n•~gfu! use would be to 
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- 200 - 150 - 100 -50 0 

li()(X)() 

Cost 
'function 

J 

50 

FIG. (5-1). Cost Function vs. Initial Value of J>. X(O) x 20. 
J c ~(u2)dt, showing a minimum cost function 1 ~ 0, at P(O) 0. 

apply the above cost function in a problem where the s j:ate of the tra

jectory at time (T) c 10 sees. is fixed, say X(T) c 0 . 0 . 

That is, to even have a reasonable problem we must: have a fixed 

right end tra j ectory and also fix time, (T). 
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6. The cost function J =fax? dt. 

The third system to be investigated was one in wJ1t c.h the integra 1 

J =fax? dt {6- 1) 

was to be min imized, again with the object equation 

X = AX + BSin'{ + CU (6-2) 

Proceeding as before, it is seen that the system equations are 

(6-3) 

Forming the H-function 

(6-4) 

and taking suitab l e differentials, Eqs. (3-9), it is possible to obtain 

the adjoint equations, Your simultaneous equations a1re thus obtained 

which, when solved, provide the solution to the prob lt~m of obtaining 

the optimal system. 

~ = AX1 + B Sin ~ + CU 

x2 "'xi 
P1 ,. - P1(A + B Cos x

1
) + 2Pfl 

p2 = 0 

(6- 5) 

From the final value functional, £qn . (3-5), 

(6-6) 

the C vector is obta ined. As before, by setting 1' i (T) equal to ·Ci, 

the terminal boundary conditions for the P
1
(t) are obt;ained. 
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P1(T)=0 

P
2

(T) = -1 

Since the la st of Eqs , (6-5) may be integrated, it i s seen that 

and, since 

it i s seen that 

(6· 7) 

(6-8) 

(6·9) 

Substituting this value for P2 into the H· f ~nction, and then dif

ferent i at i ng with respect to U and sett ing the resultant relation equal 

t o zero in order to find the minimum, results in 

(6-10) 

Since C i s a constant equal to ,25, the obvious conclusion must be tha t 

(6·11) 

At f i rst the l ast results seem quite di sheartening a s not relation 

between U and the adjoint space exist. However, this might have been 

anticipated since the H· f~nction is linear in U and, as such, coul d have 

a minimum only at one of the boundaries. 

Reconsidering the Principle of the Maximum in view of the above 

resul t s, one realizes that i n order t o minimize the H f~nction, Eqn. 

(6-4), for any X and P, U must be as large as possible and of opposite 

sign to X (since the constant C is positive and it is desired to make 

t ha t term negat i ve) , But, s ince most practical systems have an upper 
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max imum on the amount o f contro l availabl e , U W'luld then have to a ssume 

the larges t value possible under such a constra int, * In mathematical 

notation, the above result would be e xpressed as 

U = - Sgn X I Ul max (6-12} 

As a result of the above developments, the only system equation 

needed to obtain the optimal control for this system is 

(6-13) 

Eqn. (6-13} was solved numerics lly on t he digital computer by m~ans 

o f the Runge-Kutta method for evaluatio~ of Different ial Equations. A 

computer solution was desired in order to verify the conclusions made 

on the basis of the above results and knowledge of the uncontrolled system, 

namely; (1) The cost function should dec rease with increasing values of 

Control U, and (2), Once the system approa ched and was driven throu~h 

zero, a chatter mode should be obtained for the remainder of the interva l. 

The initial computer solutions i mmediately verified that the Cost 

Function did decrease as the absolute magnitude of the Control was in• 

creased . However, the chatter mode did not appear in the form expected, 

Fig . (6-1) shows that for a Control havi ng a magnitude of 25, the !ra-

jectory approaches zero in about 2.8 s econds and then begins to increase 

for a short while and then is driven back towards t he zero point. This 

variation of the trajectory with time was not the chatter mode expected. 

*This result is similar to the well known Bang- Bang principle . 
Using Pontryagin's theory, this would be ~quivalent to minimizing Jdt 
used as the final value functional. 
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x(t) 

10 

0 ___ , 
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FIG. (6·1). Trajectory, X(t), and Control, U(t) 
tion of time, shoy~g the chatter mode initiall y 
solution of the yr dt system. 

8 Til-lE 10 

U(t ) 

plotted as a func
obtained f r om the 

Note also that the control remained constant at -25 for the ent i re icter• 

val. The authors had expected that the negative control wou ld dr ive the 

trajectory past the zero point, change sign as X(t) became negative ac-

cording to Eqn. (6-12), and then drive X(t) positive. The cycl e should 

repeat itself until the enri of the interval, These results were not 

obtained as may be seen in Fig. (6-1). 

It was suggested that perhaps the sampling r ate (0.1 sec) might be 

too coarse to show the chatter and that "no ise" was interfering with the 

computations. Consequently, a sampling rate of .025 seconds was tried, 

but with no success . Results similar to thos e shown in Fig. (6-1) were 

obtained. 

At this point, the program being ut i l i ze d in tte solution of this 

system came under close scrutiny. It was discovered that the method 
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used to evalua te the different ia l e quation ( Runge- Kuttra) utilized t he 

last X(t) computed i n the inte rval dt to s e t the sign of tJ ( t) for the 

next evaluation of X(t) in the same interval. The p rc.g ram should have 

been us i ng the sign of the X(t) computed dur ing t he n •· 1st time interval 

to control t he sign of U(t) during the nth time i nten•al. Because of 

the nature of the Runge · Kutta routine, four values o f X(t) we re being 

averaged in each time interval, some being posi tive v~•lues and s ome 

possibly negative, resulting in the erroneous results . 

The program was revised to correct the above def~.c iency a nd the 

results obtained showed the chatter mode and t he alte•:nating nature of 

the control as expected. See Fig. (6-2) . 

10 

1\ 1 \ 'o 
$7 V I \ TIME 

25 - - r-- -

0 TIME 

'- - - '---

I· ' · 
-25 

FIG. (6-2) . Sketch showing the chatter mode for X(t) and t9:
2 alternating characteristics of U(t) for the syst rn having )x- dt 

as a cost function. 

The r esults obtained using the modifie d pr ogram con firmed t he earlier 
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results that the cos t function decreas ed wit h lncreasitog 11>agnitudt'. of U. 

500 

10 20 

CON!ROL ltJI 
30 40 50 

FIC. (6·3). A curve of Cost Function plotted aguinst lui showing 
the decrease in cost function (J) with the incre~1se in lUI • 

Through investigation of this system employing Vllrious values of U, 

it was found that the magnitude of the control effectEod both the magnl-

tude and the frequency of the chatter. Additional gd tphical res ult s 

may be found in Appendix IV. From an engineering point of view, it 

might be desirable to include a dead zone around zero in order to 

eliminate or reduce the chatter. 
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7, Conclusions. 

In this investigation, the authors have inquired into and shown the 

feasibility of obtaining a numerical model for the optimal control of a 

non-linear system described by a first degree differential equat ion by 

means of the theory and procedures of Pontryagin's Maximum Principle as 

set forth by L, I. Rozonoer /1, 2, ; ;, The investigation was limited to 

the ''free right end" problem and to the single dimensional case, 

The methods and procedures utilized may easily be extended t o the 

n- dimensional case without any basic change in theory or procedure, 

Various cost functions have been investigated and some conclusions 

verified by numerical solution utilizing the CDC 1604 digital computer. 

Future investigation might well be in the area of second or third 

order systems and a lso in the area of computer programming techniques, 

The methods and programs utilized to obtain solutions were effective, 

but not very efficient , 

The theories utilized here do yield solutions. However, other 

methods (Dynamic Programming for instance) might well be more effective 

and useful to the investigator, depending upon his specific needs. 
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APPENDIX I 

GRAPHS FOR THE UNCONTROLLED SYSTEM 
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APPENDIX II 

GRAPHS FOR THE COST FUNCTION J : fa (~:2 +U
2
)dt 
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T 

GRAPHS FOR TilE COST FUNCTION J J~x2 + U2) dt 

FIGURE NUMBER DESCRIPTION OF GRAPH COMMENTS 

Il- l J vs. P(O), X(O) 20.5 Final X ~ 2.78 

II-2 J vs. P(O). X(O) 17.5 Final X= 2. 77 

II-3 " " 15.0 " 2.86 

II-4 ,: 7.5 ,, 1.57 

Il-5 = 5.0 0.218 

II-6 " 2.5 " "' 0 .024 

II-7 " 1.0 = 2. 77 

II-8 X vs. Time, X(O) 20.0 P* (O) -128.0, 
(2 curves) (integer accuracy) 

J = 1156.01 and P*(O) 
= -127.4288 J = 1099.52 

II-9 u vs. Time, X(O) = 20.0 Same conditions as in 
(2 curves) II-8 above 

II-10 X and u vs. Time, P*(O) = -93 . 82 
X(O) = 15.0 

II-11 X and u vs. Time, P*(O) -41.96 
X(O) = 10.0 

II-12 X and U vs. Time, P*(O) = -14.7688 
X(O) = 5.0 

II-13 X vs. Time, X(O) 20.0 Time interval ~ 20 sec. 

II-14 u vs, Time, X(O) 20.0 Time interval = 20 sec . 
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FIG , (II-l) Cost Function, J = SJx~+ uz)dt. plotted as a function of 
initial value of the adjoint variable P, showing the true minimum and two 
local minima for the system having an initial X = 20, 
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?IC. (II-2) C03t ?unction, J =J.$XL+ U~)dt, plotted as a function of 
initial value of the adjoint variable P, showing the tl"Uia minimum and one 
local minimum for the systeiD having an initial X = 17 . 5 . 
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FIC. (II-') Cost Function, J ={('~+ ut)dt, plotted as a function of 
initial value of the adjoint variable~, showing the true minimum and one 
local minimum for the system having an initial X z 15. 
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( 

FIG, (II-4) Cost Function, J = j.x' ~ U1 )dt, plotted as a function of 
initial value of the adjoint variable' ?, showing the true minimum and tvo 
local minims for the system havill8 an initial X= 7 . 5. 
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FIG. (II-6) Cost 1'\inction, J =$X~+ U1 )dt, plotted as a function of 
initial value or tho adjoint v:u·iable P, sho·dng the true m.inimum and t-,;o 
local minima for the system having an initial X = 2. 5. 
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r 
PIG. (II-7) Cost Function, J =l<xz+ u~)dt , plotted as a fUnction of 

initial value of the adjoint variable P, shoving the true minimum and two 
local minima for the system havfne an initial X = 1.0. 
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FIG. (II-8) Optimal Traj~ctory (X) plotted against Time, for two 
values of P*(O) ahowi~ the variation in trajectory as a function of the 
accuracy to w~ch P*(OJ is determined; for the system ha'~ the Cost 
Function J • l(X~+ u~)dt and initial X= 20. 
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FIG, (II- 9) Opti~~~a:L Control (0) plotted against Time, for t~·o values 
of P"(O) showine the var!Lation in control as a fWlction of the accuracy,,to 
which P•(o) is determinccl; for the system having the Cost Function J =I<x~+ oL)dt 
and initial X = 20. • 
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FIG, (II-10) Curves of Control (U) and Trajectory (X) , plott~ 
against Time, for the optimal system having the Cost Furiction J ~ lllz+ u4 )dt 
and initial X = 15. • 
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?!G. (II- 11) Curves of Control (u) and Trajectory (X), plotte4 
aeainst ~ime , for the optiiiiAl sys tem hannc the Cost Fun.ction .J = [(1!-+ uL)dt 
end initial X ~ 10. • 

54 



(X~ 

0 
0 6 

~~-,__-

EI 

Time (see) 

(U) 

\ 
- 7 

FIG. (II-12) Curves of Control (u) ned Zrajectory (X). plott~ 
against Time, for the opti:al system having the Cost Function J = l\X•+ U~)dt 
and initial X = 5. • 
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FIG. (II- 13) Optimal Trajectory (X) plotted against Time , for the 
syste~ were T final was extended to 20 seconds, having the Cost Function 
J =J.(X'+ uL)dt and initial X= 20.0. (Note when the time was extended 
from 10 to 20 seconds that the trajectory approached zero and was ~riven 
throush the lower stnble equilibrium point, X = 2.85 by the optimum controllerr) 
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FIG. (II-14) Optimal Control (U) plotted acainst Tillie, for the 
systtm were T final was extended to 20 seconds, having th•a Cost Function 
J =~(Xa+ O~)dt and initial X • 20. 
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APPENDIX TII 

GRAPHS FOR THE COST FUNCTION J = J: u2 
dt 
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FIG. (III-1) Cost ?unction, J =J[{u~)dt , plotted as a fUnction of 
initial value of the adjoint variable P, showing the true minimum at 
P(O) • 0 . 0 with J • 0 ,0 for the syste:. having an initial X = 20.0. 
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APPENDIX IV 

GRAPHS FOR THE COST FUNCTION J 2 )b x2 
dt 

60 



.:u 
~ ~~H:::: 1-:.,T lffi Iii 
I= ~~-= 

I:;:_; r.; !.;!. ;::!;. 
t;!: Lt::J 

I= 

15" 
I:I::t::!=""..!:: 1::0 

F'-"1 I= 1 :-t:.;~'i' []~ 

X) 

J.U ICE 0 1 -l<'l l~t: 

, • 
0 

-~~ l:±r 
JV 

[Q 6 
0 

~ 
.., ~ ~ t1j 

u) ' ;.r..; lfhl 
! i!Jff 111 
j ;~j±j 

J . 
H1 

FIC. (IV- 1) Curves o1 Control (U) and T~ajectory 
Time, for the optimal system having the Cost Function 
initial X ; 20, and lUI ... ,. = 5. ~ote the absence of 
lUI"·~ was not sufficient to drive the trajectory to 

61 

l=t:, 

II 
l<h-

l • 

Pc ) , (~lotted agains't 
=J."tX~) dt . 
chatter mode, as 

[ero in the alloted time .) 



""' 

(X) 

lO 

;I 

tr. .:.:::1 

=~ 
~ 

v (;:] , .-:, :::::.:. l?il 

r:E :~ 

1-';::, 

11::::!:: 

$!!~ i§ 
~'E +.! 

~!~ 
~\: ::;l. 

~~ 

IZill 

lrt 

I ~ 

lit 

[-~-T~ 11. 

·~ _rg. -;{~ ~~~ .~ --r-- -'t T 1 

II 

tt: l ~ 

'" 

FIC. (IV-2) Optimsl Trajectory ~X~ plotted aeainst ~ime, for the 
system havinG the Cost F'uncti<in J =· ( (X. )d t and initial ; c 20. (Note the 
establishment of a chatter mode. ) lifr:...,. o 10. 

62 



, .... tt:!...., 

I f-1 

c: 

I~ ±!, 

(u ) 

rf£ I~ tt)=l •-l "1 _"'''ffi' ~ ~ .1;t ' 

!~ 
n ::E ftj 11 

ITs 

m 
1-3. I 

c !:E ' 
~ EI ~ liE§ l.illli1~ 

E:' l]J§ 

_,o ~If? 1...:-!~ 1:::clt:;r~ 6@: 13 

~ lill±fs; 
.3-.:Z 

~G. (IV-:5) Optimal Cont~l (U) plotted against Time~; ~or the system 
hsvinc the Cost Function :J = j (;:~)<lt an<l i n.:!.tial X = 20. v pte the establish
ll'cnt or a chatter mode.) !Ui.,_: "' 10. 

63 



1.\ l:r;i ttl 

~~= 

:-::!; A ':: '4=!-' 1-,AI 'J\ 

:kil m.~ ~.~ .v ~i1 l~t ~~ ci1::' ~ latJ '" 
i= ·~, ····· .. .. 

FIC. (IV- 4) Optimal Trajecto=Y ~X} plotted ~ainst ~ime, £or the 
system having the Cost Function J =f.(x")dt and initi al X •= 20. (Note the 
eatablichment of a chatter mode.) I U I..<A :: 25· · 

64 



I 
1 

I 
: ~~ 

' f' - J : 
' . Jl : ' \ 1 '~ { J ' 

lp : ·r 1 
• : ~l 1: 

I • 
: . : t i I ' • 1 

' I ' I I I 
I I I o I ~~ l 

: t ~ I . .~..: I 

. n.::. (IT-)) C:·timll c.:.r'~'L•, (n) ;,.lvttetl lJ.:·•i nst '.imr. , f or the systCO!I 
l>~v4r..; the Co~-:. ~\meCum J .J/ :'.~ ).!t ~·l 1 tlti::-1 X - ~C . (::otc :.h~ esi.eblish-
~~nl c f u. cha1..Lt:o_ .::.o.J(' .) f1rJ,....u. = ~:;. 

65 



20 tr.;:; ~ 
:-p F=l:! 

I~ g5 ll:W r;:::::t 
f':\ 

15 
till 

(X) ''"'"'' i= 
1::011 rt 

10 
l ~{l \~ 

§ ffi: ~ [.<;1 F:; ll! lffi Jf l'l 
;=.J-:;; = I -ct! 

t':= 

5 
±It:=!: 

m n :;:; 

~ ~ 

:'7 :_:- - • .f;l pi 
M a ~~~~ ~~ ~~;~ n 0 ll.r l?ih-~"'-1.;. l\l ll. M~~ 'L ~{\, ..LIJ;.1£1. ',' 'l.f'' lllrM-l-1 

::;:; 
~ 

FIC. (IV-6) Optimal Tra j ectoryf(X) plotted against T-~me , for the 
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APPENDIX Va 

SUBROUTINE RU~E-K3TTA 
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V.a. The !'ungc -l{utta method or ,;vs l ~o•.tt~o~ chff,;rent i"l e c;ua tions 

The r<l are nu>ny variants o f t r.~ Rt.t:Ke-'Kutta r.>e t hoc', but t he mos t 

l,i<.iely usc .: one ts the following: g iv«r 

y' = f(x , y) 

ve comt•utc in turn 

kl h f(xn,yn) 

k2 h f(x
0 

+ h/2, yo + k/?.) 

kJ h f(xn + h/2, Yn + k/2) 

k4 = h f(xn + hl , y n + k3) 

Yn+l = yn + lck ~ 
6 1 2k2 + 2k3 , k4). 

Thi~ process may be described in geometric terms. At the point 

(xn, y 
0

) "e compute the slope (k
1 
/h) ard using it we go one half ste:> 

fonrord and eXIlmine the slope there. Using this new slope (k/h) ~~e 

again start et (xn,y
0
), go one half s tep forward , and again san•ple the: 

s lope . Using this latest slope (k
3
/h) we again start at (xn,y

0
) but 

this time we go a ful l step forward where we e xamine the slope (k
4
/h). 

The four slopes are averaged, using weights 1/6, 2/6, 2/6, 1/6, anc 

using this ave rage slope we make the flna 1 step fro10 (xn, y 
0

) to { "nt 
1

, 

y
0
d) . If f(x , y ) d id not depend on y, then the averagin6 would prod"""' 

Simpso•ts's fomoula. The method has an error term proportiona l to hS 

It is evident that the method throws away all old information and 

begins ea<:h complete step anew, and hence is hardly likely to be as 

effic:tent as methods ~<hi.ch take advantage of old information . It is 

also evid,;nt that there is no check on whether the step size is too 

small nr too l~rge, though perhaps A study of the ki might give a c1u~. 

this is not usually rtone . 
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The general spirit of the der ivation is that the func t ions f(x, y) 

which a r e on the r i ght-hand sides are all e xpanded in se ries in powers of 

h a nd t he correspondi ng der ivat ives 6re equa t ed t o eli minat e the l ower 

powers of h. 

The method as used in a s ubroutine fo r t he inves tigations of this 

t hes i s is given below in Fortran language. 

SUBROUTINE RKUTTA(N,T,X,DT) 
DIMENSION X(JOO), AK(4,300), XDOT(JOO), C(4) 
c(l).,o.o 
C(2).,0,5 
C(J)=O,S 
C(4)=1.0 
DO 4 1=1,4 
TC=T + C(I)*IYI' 
DO 2 J:l,N 

2 XC(J).,X{J) + C(I)*AK(I-l),J) 
CALL DERIV (TC, XC, XDOT, N) 
DO 4 J:l,N 

4 AK(I , J)=DT*XDOT(J) 
DO 3 J=l,N 

3 X(J)+X(J) + (AK(l,J) +2.*AK(J,J) + AK(4,J))/6, 
RETURN 
END 
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APPENDIX Vb 

FORTRAN LANGUAGE PROGRAM TO OBTAIN TRAJECTORIES FOR THE 

UNCONTROLT.ED SYSTEM 
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•• JOB GIBSON 9 JbN 1963 SPECIAL RUN 

c 
c 

10 

PROGRAM UNCOil: 
DIMENSION Xl301, Xll9001, Y119001 , Y219001, Y319001, Y419001 

1, Y51900), Y61900) , Y7(900), Y81900), Y9(900 ) , Y101900), ·, 
2Y111900) , Y121900) 

NUMPTS = 0 
READ 3, N, TC, TF , DT , I XI J I ,J•l ,NI 
N • NO. OF EQII:S., TO •INITIAL VALUE1 TF ~FINAL VALUE 
DT : TIME STEP 1 XIJI : ARRAY OF DtPENOENT VARIABLES 

3 FORMATIIlO/IBFIO . OII 
T = TO 
NUMPTS = NUMPTS + 1 
XIINUMPTSI "T 
Yltl\U,..PTSI •XIII 
Y2CNU,..PTSI • Xl21 
Y3CNUMPTSI • X131 
Y4(NU,..PTSI = XIIII 
YSINU,..PTSI = XISI 
Y61NUMPTSI " Xl61 
Y71NUMPTSI = Xl7l 
Y81NU,..PTSI • Xl8l 
Y91NU,..PTSI : Xl9l 
YIOINUMPTSI • XI 10) 
Y111NUMPTSI = XIIII 
Y121NUMPTSI = Xl121 
IF I .T F - T - 0 T I 1 0, 2 0 , 20 
CALL GRAPH INUMPTS,X1 , YI2 , 81 
CALL GRAPH ll\UMPTS , X1 , Yil, 8 1 
CALL GRAPH INUMPTS , XI , VIC , 81 
CALL GRAPH 11\UMPTS , XI , Y9 , 81 
CALL GRAPH INU,..PTS , X1, VB 81 
CALL GRAPH (l\UMPTS , X1 , Y7 81 
CALL GRhPH INUMPTS,X1, Y6 81 
CAL L GRAPH INUMPTS , Xl , YS , 81 
CALL GRhPH ("'UMPTS,X1, Y4 , 81 
CALL GRAPH INUMPTS,X1, Y3 , 81 
CALL GRAPH III:UMPTS,X1t Y2 , 81 
CALL GRAPH INUMPTS , XI , Y1 1 Bl 

104 FORMAT 112HOTRAJECTORY /16t16.9)) 
P R I N T 1 04 , I Y 1 I I I , I • 1 , NU I' P T S l 
PRINT 104, I Y?. Ill , I " 1, NUMP TSI 
PRINT 104 , I Y3 Ill , I • 1, NUMPTSI 
PRIII:T 104, I Y4 Ill, I = 1, NUMPTSI 
PRINT 104, I Y5 Ill, I = 1, NUMPTSI 
PRINT 104, I Y6 Ill, I • 1, NUI·IPTSI 
PRINT 104, I Y7 Ill , I = 1 , NU,..PTSI 
PRINT 104 , ( YB III , I= I, NUMPTSI 
PR I NT 1011, I Y9 (tl , I" I, NUHP TSI 
PRINT 104, I YlOIII , I 1, NUMPTSI 
PRI~T 104, I Y111II r I 1, NUMPTSI 
PRINT 104 , I Yl21tl , I 1, NUMPTSI 
PRINT 105 , NU,..PTS 

105 FO~MAT 110HONUMPTS: 
STOP 

I 10 I 

20 CALL RKUTTAIN, T, X, OTI 
T = T + OT 
GO TO I 
END 
SU8RCUTINE RKUTTA(N ,T, X,OTI 
DIMENSION XI301,AKI4,301 , XOOTI30I , XCI30l ,CI41 
Cl1l•O . O 
Cl21=0.5 
Cl31•0.5 
Cl41=1 . 0 
DO 4 I.,., , 4 
TC,.T+CIIl•OT 
00 2 J=1 , N 

2 XC I J l • X I J l + C I I l •A K I I- 1 , J l 
CALL DERIVITC , XC,XOOTI 
DO 4 J .. 1,N 
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-·-- ·-------------------------
4 AK(! , Jl,. DT•XOOTIJl 

DO 3 J • l,N 
3 XIJl=XIJI+IAKil ,Jl+2.•AK12 , JI+2.•AKI3,Jl+AK(4,Jil/6 . 

RETURN 
END 
SUBROUTINE OERIVIT , x 1 XOOT I 
OI~E~SION XOCTI~Ol,X13ul 
XDOT Ill • - 0 . 1 • X I 1 I+ SINF XI lll 
X DOT I 2 I • - C. 1 • X I 2 I+ SIN F X I 2 l I 
XOOT 131 • - 0 .1 • ~I 3 I+ SINF XI 311 
XDOT 141 • - 0 .1 • X I 4 I+ SINF XI 411 
XOOT 151 '" - 0 . 1 • X I 5 I+ SJNF XI Sll 
XDOT 161 • - 0 .1 • X I 6 I+ SINF XI 611 
X DOT I 7 l • - 0 • 1 • X I 7 I+ SIN F X I 7 I I 
XDOT 181 ~ - 0 .1 • X I 8 I+ SINF I XI 811 
XOOT 191 • - 0.1 • X I 9 l+ S!NF I X( 911 

~88+ l ~?1 1 ··-o~i 1 ·· x~ 1 d0 1 1 •\n~f'x~\1 1 ~~~~ 
XDOT I 12 I • - 0 .1 • XI 12 I + SINFI XI 12 II 
END 
END 

12 
. D 10.0 0 .1 -.5 -1 .0 -2.0 - 3. 
- 1.0 -7.5 -a.o -a.5 
0 
02 X VS TI ~E UNCONTROLLED SYSTEM 
02 GIBSON ANO ALMSTEOT 
1 0 
2 0 
2 0 
2 0 
2 0 
2 0 
2 0 
~ g 
2 0 
~ g 

-1 0 . 0 -15. 0 -20. 0 
10 _ oe 

7 DECEMB_ER . .1...9.62 
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APPENDIX Vc 

REPRESENTATIVE FORTRAN LANGUAGE PROGRAM TO OBTAIN COST 
FUNCTION AS A FUNCTION OF INITIAL P (ADJOINT VARIABLE) 
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•• JOB GIBSON .. 9 JAN 1963 SPECIAL RUN MAX TIME 15 Ml,rr-'
11

' • 

c c c 

c 

c 

c 

PRO(;QAH PJUX 
DI MENSION XI<JSOI, X119501, Y119501 
REAO 3, TO, TF, DT , )(I, AL, AH, OA 
TO= INITIAL VALUE , TF• FINAL VALUE, OT= TIME STEP~ XI• INITIAL ~ 
AH= HIGHEST INITIAL ADJOINT, AL= LOWES T INITIAL AuJOlNT, 
OA= SP ACING CF INITIAL ADJDINTS POINTS 

3 

300 

301 

302 

FORMAT C8F 10 . 01 
N = 900 
FORMS MATRIX OF INITIAL VALUES OF X 
00 300 I ,. 1,N,3 
X I I I a Xl 
FORM S MATRIX OF P-ZERO 
)((21 • AL 
~?r1°l ~ci-!iN~ 3oA 
ZEROIZES IN!TIAL VALUES OF COST FUNCTION 
00 302 I • , N, 3 
XI I I ,. 0.0 
T= TO 
NUMPTS • N/3 
L • 2 
00 12 J = 1jNUHPTS 
Xl!JI • XCL 

12 L " L+ 3 
21 IF ITF -T) 1C, 20, 20 
10 ~0 lt J= 1,~~HPTS 

YliJI = XILI 
11 L= L+3 

DO 13 1 ,. 1, NUMPTS 
J,. 2•1l-11 +I 

13 XCII • XCJI 
PRINT 101 

101 FORMAT I 43HOP-ZERO VS COST FUNCTION 
PRINT 102 I Xl!JI, Y1111 1 XIII, 1•1, NUMPTSI 

E~~~A~Rl~~·1ku~~~s?'x1~1 ~1? 1 a1 
STOP 

102 

20 CALL RKUTTA IN,T,X,DTI 
T= T+OT 
GO TO 21 
END 

FINAL Xl 

SUBROUTINE RKU TTAIN,T,X1DTI 
DIMENSION XI~SOI , AK(4 , 9~0), XDOTC950) , XCC950) , CC4l 
CC11=0.0 
Cl21•0 . 5 
CI31=0 . S 
CC~I=1.0 

~g .. ~.lil!~oT 
DO 2 J•1,N 

2 XC!Jl •XIJ ) + CIII •AKII -1,JI 
CALL DERIV lTC, XC , XDOT, 1\) 

DO 4 Ja1 ,N 
4 AK(I ,J) • DT • XDOTIJI 

DO 3 J = 1 >.1 
3 XCJI=XIJI +i AKC 1,J l +2 .•AKC2 , Jl+2. • AK(3,J)+AKI4 0 J))/6. 

500 

RETURN 
END 
SUBROUTINE OER I VITJX , XOD T, Nl 
DIMENSION XDCTI950 , Xl 9501 
DO 500 K•1,N,3 
L"'K+1 
M=K+2 
XDOTIK)"" 
XDOTill• 
XOOT(M)n 
END 

-0.1 • X(Kl+ SINFCXIKII+ .03125• X(Ll 
0 .1• Xlll- Xlll• CDSFIXIKil + 2.0• XIKI 

XIKI .. 2 + .0,15625• XILI ... 2 

END 

Tho follo~ine are 
TO-= 0.0 
'I'F' = 10.0 
DT = .1 
xr .. 20.0 

the values or the variablos read in for this program: 

A1 = -250.0 
AH::: 50.0 
DA c 1.0 
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APPENDIX Vd 

REPRESENTATIVE FORTRAN LANGUAGE PROGRAM USED TO COMPUTE 
THE OPTIMUM CONTROL POLICY AND TRAJECTORY HAVING THE 

P*(O) FOR THE SYSTEM. 
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, JOB ALMSTEOT MK2 MOO 1 l/20/63 MAX TIME 5 MIN XIOI"' 20.0 OPT. TFI201 
PROGRAM MARK2 MOO 1 

7 DIMENS ION Xl 301 , X1110 , 201 1,UII0 , 201l, CFCNI101, . 
71 ~~!Y}~~~~CTg~1~~~ 2 8~ 1 co~t~5L2~~~0RT, CFCN= COST FUNCTION 

READ 101, N, TO , TF 1 OT, XI, AL 
N= TOTAL NUMBER OF tONS, TO , INITIAL TIME, TF = FINAL TIME 
XI~ INITIAL VALUE OF X, AL ~ INITIAL P VALUE 
00 1 I "' 1 , N, 3 
Xtll• XI 
READ 102 , (XII), f22,N,31 
00 5 I= 3, N, 3 

5 xn1 =o.o 
T"' TO 
KK= \ 
NN = N/3 

30
0 

IF!TF- Tl 10 , 20 , 20 
l L= 3 

00 11 I" 1, NN 
CFCNIIl= XILI 

11 L:L+3 
TIMEI\l = 0.0 
00 15 I = 2, KK 

15 TIMEIII: TlMEil-11+ OT 

~~~~$ lb3 , 
1 CF~~III 

00 17 K = 1, KK 
XRAY IKI = X11I , KI 

17 UNC LE IKI ~ UII,KI 
PRINT 104 , I XRAY IKI, K • 11 KKI 
PRINT lOS, !UNCLE IKI, K• l ,KK) 
NPTS s KK 
CALL GRAPH I NPTS, TIME, XRAY, 81 
CALL GRAPH I NPTS, TIME, UNCLE1 8) 

16 CALL GRAPH I NPTS , XRAY , UNCLt , 81 
STOP 

20 L: 1 
00 2 1 I= 1, NN 
X 1 I I , KK I = X ( l I 
UII , KK I • XIL+-1 1/8. 0 

21 L= L+3 
KK= KK+ 1 
CALL RKUTTAIN,T, X, OTI 
T= T+ OT 
GO TO 30 

101 FORMAT I 110 , 7Fl0.31 
102 FORMATI8F10 . 61 
103 FORMATI17HOCOST FUNCTIO~ • El6 .911 
104 FORMATI12HOTRAJECTORY /16E l 6 . 91 
105 FORMATI16HOCONTROL EFFORT /16E16 . 911 

END 
SUBROUTINE RKUTTAIN,T , X1 0TI 
DI MENSION X16011, AK14 , 6oll , XDOTI6011, XC160ll, Cl 41 
Cl1)c0 . 0 
CI21 ,.0. S 
Cl31•0. 5 
Cl41•1 . 0 

~g~~•t(~J~or 
DO 2 Jz1 , N 

2 XCIJI •X(J) + Clll•AKII-1 , JI 
CALL OERIV lTC , XC , XOOT , Nl 

00 4 J•l,N 
4 AKI I,JI • OT • XOOTIJI 

DO 3 J • 1 ,N 
3 XIJI•XIJI+IAKI1 , JI+2 . •~~~2 , JI~2.•AKI3 , J) + AKI4 ,JI I/6 . 

RETURN 
END 
SUBROUTINE OERIVITpX,XODT 1NI 
DIMENS ION XDOTI6011 , Xl6011 



500 

DO 500 K•1,N,3 
L =K + 1 
M'"K+2 
xooT CKl• -o.1• xiKI + stNFIXIKII+ .03125• XILI 
XOOTill • 0. 1• X Ll- X(LI • COSF IX!Kll + 2.0• XIKI 
XOOTIMI• XIKI••2 + . 01 5625• XILI••2 
END 
END 

90 .0 0.1 
128.955976 

20.0 20.0 o.o 

2 
2 

TRAJEC TORY 
GIBSON AND 

0 
X VS TIME 
ALMSTEDT 

P-ZERO z 
JAN 1963 

20.0 
MK2 

NO 
10 08 

1 TFifOI 

10 08 
2 CONTROL FU~CT I ON u vs TIME NO 1 TFI20) . 
2 GIBSON ANO ALMSTEDT JAN 1963 M~2 

0 
2 INITIAL CONTROL VS. TRAJE:TORY 
2 GIBSON AND ALHSTEOT JA" 1960 

0 
OPTIMAL 

MK2 
10 08 

SYSTEM TF{201 
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APPENDIX Ve 

FORTRAN LANGUAGE PROGRAM UTILIZED IN THE EVALUATION 
OF TilE TRAJECTORIES(. A~D CONTROL POLICIES FOR l'HE 
SYSTEM HAVING J(X )dt AS THE COST FUNCTION. 
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- •• JOB GIBSON 22 JA~UARV 1963 ~K4MCDO ALT1 
PROGRAM MK4 ~00 0 ALT 1 

C THIS PROGRAM USES INTERGAL X SQUARE AS THE COST FUNCTION 
DIMENSION XI30J , XRAVI15,5COJ , Ul151 , UNCLE115,500I , TIMEISOO), 

1Y111011 Y2(101J, Vl151 
READ 10f,NN , TOl TF, DT, XI, lUI 11 , 1=1 , NN I 

101 FORMAT I 18/ 15F:>.Ol 
N : 2 • NN 

C FORM X-MATRIX 
00 1 1=1 , NN 
X I I I =X I 
N1sNN+1 
002IaN1,N 

2 XII I= 0.0 
T= TO 
NPTS= 0 

27 IFITF - Tl 10, 20, 20 
20 NPTS = NPTS + 1 

IF I 1- NPTSI 21 , 26 26 
21 CALL RKUTTA (N , T,X , OT, U, VI 

T = T + OT 
26 TIMEINPTSJ = T 

DO 28 I • 1 NN 
IF I XI Ill l3 24, 25 

23 UNCLE I I ,NPTSf • - U( II 
GO TO 22 

24 UNCLE ll , NP TSI • 0 . 0 
GO TO 22 

25 UNCLE II , NPTSI= Ull1 
22 XRAY ( l ,NPTSiz XIII 
28 VIII = UNCLEI I, NPTSI 

GO TO 27 
10 DO 11 I " 1 , ~N 

PRINT 11 1 , XCI + ~NI 
11 1 FORMAT 117HOCOST FUNCTION= E16 . 9 1 
112 ~~A~XT 1 1~~~~~~XJ~tt5~vJi 1 ! ~~1~~91 1 
11 3 ~~A~lr 1 l T6~~~g~~Rbl· ~~~5Rr 1 i 7~~ ~ !.911 

~9~~f ~=~R~~T~!K I 
12 V21KI = UNCLE! Kl 

CALL GRAPH !~PTS , T IME,V1,81 
11 CALL GRAPH INPTS , TIME , Y2 , 81 

PRINT 114 NPTS . 
114 FORMAT ( BHONPTS "' 151 

STOP 
END 
SUBROUTINE RKUTTA (N , T,X , DT , U, VI 
Ol HENS I ON X!301 , AK(4 ,3 01 , XDOT 130 ), XCI30 1, CI41,VI151 , Ul301 
Cl 1 I aO . O 
Cl 2 1=0 . 5 
Cl31=0.5 
Cl41=1 . 0 
00 4 I = 1 , 4 
TC=T+CIII•Of 
00 2 J s1 , N 

2 XCIJI "XIJI + CITI•AKII-1 , JI 
CA LL OERIV I XC, TC, · XQOT , N, U, VI 
00 4 J = 1 N 

4 AK(J , JI "OT•XOOTIJI 
00 3 J = 1 , N 

3 XIJI=X(JI+IhKI 1, JI+2 . •AKI2 , JI+2 .•AKI3 , JI +AK(4 , JII/6 . 
RE TURN 
END 
5Y~~2~16~E ~~~}Y36~ : rx~~8T:Nu<~sl.v~<lSI 

NN = N/2 
N1 = NN + 1 
00 1. I= 1 , NN 
XDOTI I I "- . 1• XIII + SINF(XIIII +.25 • VI I I 
00 2 I = N1 , N 

2 )(QQT (( ): XII - NNI .. 2 
END 
END 

10 
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SofuttOn of 1 p.-oblem of opt1m11 control 
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